TECH in AMERICA (TiA)

SHARING AMERICA'S TECH NEWS FROM THE VALLEY TO THE ALLEY

Atoms’ Quantum Spin Controlled in Odd Chilled Gas

This artist's conception shows atoms in a Bose-Einstein Condensate (BEC) being pushed by laser light. When the atoms, which all have the same magnetic spin orientation (represented by their blue and yellow "poles"), are pushed toward the viewer, they drift to the right due to their spin — a result of the spin Hall effect, which has been observed in a BEC for the first time.  CREDIT: Edwards/JQI View full size image

This artist’s conception shows atoms in a Bose-Einstein Condensate (BEC) being pushed by laser light. When the atoms, which all have the same magnetic spin orientation (represented by their blue and yellow “poles”), are pushed toward the viewer, they drift to the right due to their spin — a result of the spin Hall effect, which has been observed in a BEC for the first time.
CREDIT: Edwards/JQI
View full size image

by Jesse Emspak (courtesy Technewsdaily)

This artist’s conception shows atoms in a Bose-Einstein Condensate (BEC) being pushed by laser light. When the atoms, which all have the same magnetic spin orientation (represented by their blue and yellow “poles”), are pushed toward the viewer, they drift to the right due to their spin — a result of the spin Hall effect, which has been observed in a BEC for the first time.

CREDIT: Edwards/JQI

View full size image

Physicists have revealed a new way to control the spins of atoms, an achievement that could open the way for new kinds of sensors while also shedding light on fundamental physics.

While scientists have been able to nudge the spins of atoms in the past, this new achievement, detailed in the June 6 issue of the journal Nature, is the first time they’ve done it in a strange chilled gas called a Bose-Einstein condensate.

The researchers say the finding may also be a step toward spintronics, or electronic circuits that use an electron’s spin instead of its charge to carry information.

Chilled rubidium

The research team, from the Joint Quantum Institute, the National Institute for Standards and Technology (NIST) and the University of Maryland, used several lasers to trap rubidium atoms in a vacuum chamber. The rubidium atoms were in a tiny cloud, about 10 micrometers on a side, where 1 micrometer is about the size of a bacterium. The atoms were cooled to a few billionths of a degree above absolute zero. [Wacky Physics: The Coolest Little Particles in Nature]

By chilling the atoms, the researchers created a Bose-Einstein condensate, a special kind of gas in which all the atoms are in the same quantum mechanical state, meaning they all had either “up” or “down” spins; the condensate revealed phenomena that could ordinarily only be seen at the atomic scale.

In addition, very cold atoms are easier to track, since they are moving relatively slowly. At normal temperatures, the atoms move quickly and the apparatus has to be bigger. “You want to give yourself the time that ultracold atoms give you,” said study researcher Ian Spielman, a NIST physicist. “And you can do the whole thing in less space.”

Your browser does not support iframes.

The researchers then used another set of lasers to gently push the cold gas. That small push moved the atoms just enough that the team could see the atoms with different spins, or magnetic alignments, move to one side or the other, depending on whether they were spinning up or down.

The movement is called the spin Hall effect. It involves particles of different spins moving to one side or the other of a piece of material when an electric current runs through it. The particles — they can be electrons or atoms — move perpendicular to the direction of the current.

Spin Hall effects have been detected before in semiconductors, but this is the first time an experiment has been done with a Bose-Einstein condensate.

By inducing this effect in the rubidium, the NIST team showed they could control where the atoms of different spins went, in this case by applying a laser.

Thank you. TiA.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Top Posts & Pages

POSTS

Enter your email address to follow this blog and receive notifications of new posts by email.

TEAM TiA!

%d bloggers like this: